abstract
- In this study, an inexact multistage stochastic integer programming (IMSIP) method is developed for water resources management under uncertainty. This method incorporates techniques of inexact optimization and multistage stochastic programming within an integer programming framework. It can deal with uncertainties expressed as both probabilities and discrete intervals, and reflect the dynamics in terms of decisions for water allocation through transactions at discrete points of a complete scenario set over a multistage context. Moreover, the IMSIP can facilitate analyses of the multiple policy scenarios that are associated with economic penalties when the promised targets are violated as well as the economies-of-scale in the costs for surplus water diversion. A case study is provided for demonstrating the applicability of the developed methodology. The results indicate that reasonable solutions have been generated for both binary and continuous variables. For all scenarios under consideration, corrective actions can be undertaken dynamically under various pre-regulated policies and can thus help minimize the penalties and costs. The IMSIP can help water resources managers to identify desired system designs against water shortage and for flood control with maximized economic benefit and minimized system-failure risk.