Home
Scholarly Works
Resources and environmental systems management...
Journal article

Resources and environmental systems management under synchronic interval uncertainties

Abstract

Resources and environmental systems management (RESM) is challenged by the synchronic effects of interval uncertainties in the related practices. The synchronic interval uncertainties are misrepresented as random variables, fuzzy sets, or interval numbers in conventional RESM programming techniques including stochastic programming. This may lead to ineffectiveness of resources allocation, high costs of recourse measures, increased risks of unreasonable decisions, and decreased optimality of system profits. To fill the gap of few corresponding studies, a synchronic interval linear programming (SILP) method is proposed in this study. The proposition of interval sets and interval functions and coupling them with linear programming models lead to development of an SILP model for RESM. This enables incorporation of interval uncertainties in resource constraints and synchronic interval uncertainties in the programming objective into the optimization process. An analysis of the distribution-independent geometric properties of the feasible regions of SILP models results in proposition of constraint violation likelihoods. The tradeoff between system optimality and constraint violation is analyzed. The overall optimality of SILP systems under synchronic intervalness is quantified through proposition of integrally optimal solutions. Integration of these efforts leads to a violation-constrained interval integral method for optimization of RESM systems under synchronic interval uncertainties. Comparisons with selected existing methods reveal the effectiveness of SILP at eliminating negativity of synchronic intervalness, enabling risk management of and achieving overall optimality of RESM systems, and enhancing the reliability of optimization techniques for RESM problems. The exploited framework for analyzing synchronic interval uncertainties in RESM systems is helpful for addressing synchronisms of other uncertainties such as randomness or fuzziness and avoiding the resultant decision mistakes and disasters due to neglecting them.

Authors

Cheng G; Huang G; Dong C; Lv Y; Zhang J; Yao Y; Chen X

Journal

Stochastic Environmental Research and Risk Assessment, Vol. 32, No. 2, pp. 435–456

Publisher

Springer Nature

Publication Date

February 1, 2018

DOI

10.1007/s00477-017-1445-5

ISSN

1436-3240

Contact the Experts team