Optimization of Enhanced Ultrafiltration Conditions for Cd with Mixed Biosurfactants Using the Box-Behnken Response Surface Methodology Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A mixture of the environmentally friendly biosurfactants rhamnolipids and sophorolipids was used as a source of micelles in this study. The Box-Behnken design and response surface methodology was used to investigate the influence of factors on micellar-enhanced ultrafiltration (MEUF). Simulated Cd-containing wastewater was used for testing. Based on single-factor experiments, the initial Cd2+ concentration, biosurfactant mixing ratio (α) and pH were chosen as influential variables, and both the Cd2+ rejection coefficient and permeation flux were used as responses. A predictive model based on a quadratic polynomial regression equation was established to determine the optimized enhanced ultrafiltration conditions for Cd. The results show that the regression equation is extremely significant and fits the data accurately. The optimal enhanced ultrafiltration conditions are as follows: initial Cd2+ concentration of 10.0 mg/L, α of 0.30 and pH of 9.58. Under these conditions, the rejection coefficient and the permeation flux of Cd2+ are 99.14% and 37.36 L/m2·h, respectively. The experimental results confirm that the experimental values agree well with the values predicted by the model. Further, these results provide theoretical support for using MEUF to treat heavy metal-containing wastewater when biosurfactants are used for micelle formation.

authors

  • Chai, Tian
  • Yan, Huizhi
  • Zhang, Zhibin
  • Xu, Min
  • Wu, Yicheng
  • Jin, Lei
  • Huang, Gordon
  • Fu, Haiyan

publication date

  • February 28, 2019