Copper uptake in adult rainbow trout irradiated during early life stages and in non-irradiated bystander trout which swam with the irradiated fish
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
PURPOSE: This investigation forms part of a wider study into the legacy effects of exposure of rainbow trout eggs 38 h after fertilization, eyed eggs, yolk sac larvae (YSL) or first feeders to a single 0.5 Gy X-ray dose, including the induction of a bystander effect, by the irradiated fish, to non-irradiated fish. Fish may be exposed to multiple environmental stressors, including waterborne metals, during their lifespan and, while there are data on how the legacy of early life stage irradiation and bystander effect induction is affected by waterborne aluminum and cadmium, there are no studies into the effects radiation or the radiation induced bystander effect on metal uptake. Therefore the aim of this investigation was to determine if the legacy of early life stage irradiation included an effect on copper uptake by adult fish and by non-irradiated bystander adult trout which swam with the irradiated fish. METHODS: The four early life stages mentioned above were exposed to a single 0.5 Gy X-ray dose and then maintained, for two years with no further irradiation. At two years old the irradiated fish were allowed to swim, for 2 h with non-irradiated bystander trout (also two years old). After this time copper uptake was determined using 64Cu. RESULTS: Copper uptake was increased in adult trout irradiated as eggs at 48 h after fertilization and as first feeders but eyed egg or YSL irradiation had no effect. Copper uptake was also increased in the bystander trout which swam with trout irradiated as eggs at 48 h after fertilization and as eyed eggs but there was no effect on non-irradiated adult trout which swam with trout irradiated as YSL or first feeders. CONCLUSIONS: When put in context with the proteomic changes observed in these fish we propose the increased copper uptake in adult trout irradiated as eggs at 48 h after fertilization could be part of an anti-tumorigenic response and the increase in copper uptake in adult trout irradiated as first feeders could be part of a potentially protective pro-apoptotic response. Similarly we propose the increase in copper uptake in non-irradiated adult trout, induced by trout irradiated as eggs at 48 h after fertilization or as eyed eggs, was part of the universally anti-tumorigenic nature of the X-ray induced bystander effect in fish. However this was exclusive to embryonic irradiation.