The Traumatic Brain Injury Model Systems National Database: A Review of Published Research
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The Traumatic Brain Injury Model Systems (TBIMS) is the largest longitudinal TBI data set in the world. Our study reviews the works using TBIMS data for analysis in the last 5 years. A search (2015-2020) was conducted across PubMed, EMBASE, and Google Scholar for studies that used the National Institute on Disability, Independent Living and Rehabilitation Research NIDILRR/VA-TBIMS data. Search terms were as follows: ["TBIMS" national database] within PubMed and Google Scholar, and ["TBIMS" AND national AND database] on EMBASE. Data sources, study foci (in terms of data processing and outcomes), study outcomes, and follow-up information usage were collected to categorize the studies included in this review. Variable usage in terms of TBIMS' form-based variable groups and limitations from each study were also noted. Assessment was made on how TBIMS' objectives were met by the studies. Of the 74 articles reviewed, 23 used TBIMS along with other data sets. Fifty-four studies focused on specific outcome measures only, 6 assessed data aspects as a major focus, and 13 explored both. Sample sizes of the included studies ranged from 11 to 15,835. Forty-two of the 60 longitudinal studies assessed follow-up from 1 to 5 years, and 15 studies used 10 to 25 years of the same. Prominent variable groups as outcome measures were "Employment," "FIM," "DRS," "PART-O," "Satisfaction with Life," "PHQ-9," and "GOS-E." Limited numbers of studies were published regarding tobacco consumption, the Brief Test of Adult Cognition by Telephone (BTACT), the Supervision Rating Scale (SRS), general health, and comorbidities as variables of interest. Generalizability was the most significant limitation mentioned by the studies. The TBIMS is a rich resource for large-sample longitudinal analyses of various TBI outcomes. Future efforts should focus on under-utilized variables and improving generalizability by validation of results across large-scale TBI data sets to better understand the heterogeneity of TBI.