Recruitment of unique neural systems to support visual memory in normal aging
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The performance of many cognitive tasks changes in normal aging [1] [2] [3]. Recent behavioral work has identified some tasks that seem to be performed in an age-invariant manner [4]. To understand the brain mechanisms responsible for this, we combined psychophysical measurements of visual short-term memory with positron emission tomography (PET) in young and old individuals. Participants judged the differences between two visual stimuli, and the memory load was manipulated by interposing a delay between the two stimuli. Both age groups performed the task equally well, but the neural systems supporting performance differed between young and old individuals. Although there was some overlap in the brain regions supporting performance (for example, occipital, temporal and inferior prefrontal cortices, and caudate), the functional interconnections between these common regions were much weaker in old participants. This suggests that the regions were not operating effectively as a network in old individuals. Old participants recruited unique areas, however, including medial temporal and dorsolateral prefrontal cortices. These unique areas were strongly interactive and their activity was related to performance only in old participants. Therefore, these areas may have acted to compensate for reduced interactions between the other brain areas.