Strained Lattice with Persistent Atomic Order in Pt3Fe2Intermetallic Core–Shell Nanocatalysts Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Fine-tuning nanocatalysts to enhance their catalytic activity and durability is crucial to commercialize proton exchange membrane fuel cells. The structural ordering and time evolution of ordered Pt3Fe2 intermetallic core-shell nanocatalysts for the oxygen reduction reaction that exhibit increased mass activity (228%) and an enhanced catalytic activity (155%) compared to Pt/C has been quantified using aberration-corrected scanning transmission electron microscopy. These catalysts were found to exhibit a static core-dynamic shell regime wherein, despite treating over 10,000 cycles, there is negligible decrease (9%) in catalytic activity and the ordered Pt3Fe2 core remained virtually intact while the Pt shell suffered a continuous enrichment. The existence of this regime was further confirmed by X-ray diffraction and the compositional analyses using energy-dispersive spectroscopy. With atomic-scale two-dimensional (2-D) surface relaxation mapping, we demonstrate that the Pt atoms on the surface are slightly relaxed with respect to bulk. The cycled nanocatalysts were found to exhibit a greater surface relaxation compared to noncycled catalysts. With 2-D lattice strain mapping, we show that the particle was about -3% strained with respect to pure Pt. While the observed enhancement in their activity is ascribed to such a strained lattice, our findings on the degradation kinetics establish that their extended catalytic durability is attributable to a sustained atomic order.

publication date

  • July 23, 2013