Home
Scholarly Works
Learning to Make Coherent Predictions in Domains...
Conference

Learning to Make Coherent Predictions in Domains with Discontinuities

Abstract

We have previously described an unsupervised learning procedure that discovers spatially coherent properties of the world by maximizing the information that parameters extracted from different parts of the sensory input convey about some common underlying cause. When given random dot stereograms of curved surfaces, this procedure learns to extract surface depth because that is the property that is coherent across space. It also learns how to interpolate the depth at one location from the depths at nearby locations (Becker and Hinton. 1992). In this paper, we propose two new models which handle surfaces with discontinuities. The first model attempts to detect cases of discontinuities and reject them. The second model develops a mixture of expert interpolators. It learns to detect the locations of discontinuities and to invoke specialized, asymmetric interpolators that do not cross the discontinuities.

Authors

Becker S; Hinton GE

Volume

4

Pagination

pp. 372-379

Publication Date

January 1, 1991

Conference proceedings

Advances in Neural Information Processing Systems

ISSN

1049-5258

Labels

Fields of Research (FoR)

Contact the Experts team