Progress of photothermal membrane distillation for decentralized desalination: A review Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The conventional membrane distillation (MD) process is accompanied by large energy consumption, low thermal efficiency and inevitable requirements of centralized infrastructures, which impede its practical applications, especially in the offshore and remote off-grid areas. Thanks to the rapid development of efficient photothermal materials over the last decade, a new photothermal membrane distillation (PMD) process has emerged to harness abundant solar energy and localize heating on the membrane-feed water interface via photothermal effects. Driven by the temperature difference across the PMD membrane, water vapor can be generated on the membrane-feed surface, transported through membrane pores and condensed at permeate side to obtain freshwater, thus tackling the challenge of obtaining clean water using green energy. The PMD process avoids heating the entire bulk feed water and feed transportation from heat units to membrane modules, which save substantial amounts of energy. The interfacial localized heating intrinsically mitigates the temperature polarization across the membrane. The latent heat from vapor condensation can be effectively recovered via multi-level PMD configurations. As great efforts have been made to exploit PMD process, it is imperative to review the state-of-the-art progress of PMD and shed light on its future trend. Here, we briefly illustrate PMD mechanisms and membrane requirements, photothermal materials feasible for developing PMD membranes along with their light-to-heat mechanisms. This is followed by reviewing diverse approaches to prepare PMD membranes, which are classified into one-step fabrication and multi-step modification methods. Comprehensive discussion about PMD membrane performance in different configurations and their small pilot-scaled applications are provided. The effects of operational parameters and module designs are discussed in Section 6. Finally, the current challenges and future perspectives of PMD process are emphasized with the aim of providing guidance for future works.

publication date

  • August 2021