Direct Comparison of Three Buckling-Based Methods to Measure the Elastic Modulus of Nanobiocomposite Thin Films Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • To engineer tunable thin-film materials, the accurate measurement of their mechanical properties is crucial. However, characterizing the elastic modulus with current methods is particularly challenging for sub-micrometer thick films and hygroscopic materials because they are highly sensitive to environmental conditions and most methods require free-standing films which are difficult to prepare. In this work, we directly compared three buckling-based methods to determine the elastic moduli of supported thin films: (1) biaxial thermal shrinking, (2) uniaxial thermal shrinking, and (3) the mechanically compressed, strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) method. Nanobiocomposite model films composed of cellulose nanocrystals (CNCs) and polyethyleneimine (PEI) were assembled using layer-by-layer deposition to control composition and thickness. The three buckling-based methods yielded the same trends and comparable values for the elastic moduli of each CNC-PEI film composition (ranging from 15 to 44 GPa, depending on film composition). This suggests that the methods are similarly effective for the quantification of thin-film mechanical properties. Increasing the CNC content in the films statistically increased the modulus; however, increasing the PEI content did not lead to significant changes. For the CNC-PEI system, the standard deviation of elastic moduli determined from SIEBIMM was 2-4 times larger than that for thermal shrinking, likely due to extensive cracking due to the different stress applied to the film when subjected to compression of a relaxed substrate versus the shrinking of a pre-strained substrate. These results show that biaxial thermal shrinking is a reliable method for the determination of the mechanical properties of thin films with a simple implementation and analysis and low sensitivity to small deviations in the input parameter values, such as film thickness or substrate modulus.

publication date

  • June 23, 2021