Vacuolar H+-ATPase and Na+/K+-ATPase energize Na+ uptake mechanisms in the nuchal organ of the hyperregulating freshwater crustacean Daphnia magna.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The nuchal organ of the embryos and neonates of the cladoceran, Daphnia magna, has been shown to be a site of Na+ influx and H+, NH4+ and Cl- efflux. This study combines the scanning ion-selective electrode technique with application of inhibitors of specific transporters to assess the mechanisms of Na+ transport across the nuchal organ. Na+ influx across the nuchal organ was inhibited both by inhibitors of the Na+/K+-ATPase (ouabain, bufalin) and by inhibitors of the vacuolar H+-ATPase (bafilomycin, N-ethylmaleimde, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, KM91104, S-nitrosoglutathione). Na+ influx was unaffected by the epithelial Na+ channel blocker benzamil, but was sensitive to ethylisopropyl amiloride and elevated external ammonium concentrations, consistent with roles for Na+/H+ and Na+/NH4+ exchangers in the apical membrane but not Na+ channels. Transport across the basolateral membrane into the haemolymph is proposed to involve the Na+/K+-ATPase and a thiazide-sensitive Na+/Cl- cotransporter.