Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Background Coeliac disease is a chronic intestinal inflammatory disorder due to an aberrant immune response to dietary gluten proteins in genetically predisposed individuals. Mucosal immune response through IgA secretion constitutes a first line of defence responsible for neutralizing noxious antigens and pathogens. The aim of this study was the characterization of the relationships between immunoglobulin-coated bacteria and bacterial composition of faeces of coeliac disease (CD) patients, untreated and treated with a gluten-free diet (GFD) and healthy controls. Results IgA-coated faecal bacterial levels were significantly lower in both untreated and treated CD patients than in healthy controls. IgG and IgM-coated bacterial levels were also significantly lower in treated CD patients than in untreated CD patients and controls. Gram-positive to Gram-negative bacteria ratio was significantly reduced in both CD patients compared to controls. Bifidobacterium, Clostridium histolyticum, C. lituseburense and Faecalibacterium prausnitzii group proportions were less abundant (P < 0.050) in untreated CD patients than in healthy controls. Bacteroides-Prevotella group proportions were more abundant (P < 0.050) in untreated CD patients than in controls. Levels of IgA coating the Bacteroides-Prevotella group were significantly reduced (P < 0.050) in both CD patients in comparison with healthy controls. Conclusions In CD patients, reduced IgA-coated bacteria is associated with intestinal dysbiosis, which altogether provide new insights into the possible relationships between the gut microbiota and the host defences in this disorder.

authors

  • De Palma, Giada
  • Nadal, Inmaculada
  • Medina, Marcela
  • Donat, Ester
  • Ribes-Koninckx, Carmen
  • Calabuig, Miguel
  • Sanz, Yolanda

publication date

  • December 2010