Morse theory of the moment map for representations of quivers Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The results of this paper concern the Morse theory of the norm-square of the moment map on the space of representations of a quiver. We show that the gradient flow of this function converges, and that the Morse stratification induced by the gradient flow co-incides with the Harder-Narasimhan stratification from algebraic geometry. Moreover, the limit of the gradient flow is isomorphic to the graded object of the Harder-Narasimhan-Jordan-H\"older filtration associated to the initial conditions for the flow. With a view towards applications to Nakajima quiver varieties we construct explicit local co-ordinates around the Morse strata and (under a technical hypothesis on the stability parameter) describe the negative normal space to the critical sets. Finally, we observe that the usual Kirwan surjectivity theorems in rational cohomology and integral K-theory carry over to this non-compact setting, and that these theorems generalize to certain equivariant contexts.

publication date

  • February 2011