Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Our objective was to conduct a scoping review which summarizes the growing body of literature using wearable inertial sensors for gait analysis in lower limb osteoarthritis. We searched six databases using predetermined search terms which highlighted the broad areas of inertial sensors, gait, and osteoarthritis. Two authors independently conducted title and abstract reviews, followed by two authors independently completing full-text screenings. Study quality was also assessed by two independent raters and data were extracted by one reviewer in areas such as study design, osteoarthritis sample, protocols, and inertial sensor outcomes. A total of 72 articles were included, which studied the gait of 2159 adults with osteoarthritis (OA) using inertial sensors. The most common location of OA studied was the knee (n = 46), followed by the hip (n = 22), and the ankle (n = 7). The back (n = 41) and the shank (n = 40) were the most common placements for inertial sensors. The three most prevalent biomechanical outcomes studied were: mean spatiotemporal parameters (n = 45), segment or joint angles (n = 33), and linear acceleration magnitudes (n = 22). Our findings demonstrate exceptional growth in this field in the last 5 years. Nevertheless, there remains a need for more longitudinal study designs, patient-specific models, free-living assessments, and a push for “Code Reuse” to maximize the unique capabilities of these devices and ultimately improve how we diagnose and treat this debilitating disease.

authors

  • Kobsar, Dylan
  • Masood, Zaryan
  • Khan, Heba
  • Khalil, Noha
  • Kiwan, Marium Yossri
  • Ridd, Sarah
  • Tobis, Matthew

publication date

  • December 13, 2020