The relativistic tunneling flight time may be superluminal, but it does not imply superluminal signaling Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Wavepacket tunneling, in the relativistic limit, is studied via solutions to the Dirac equation for a square barrier potential. Specifically, the arrival time distribution (the time-dependent flux) is computed for wavepackets initiated far away from the barrier, and whose momentum is well below the threshold for above-barrier transmission. The resulting distributions exhibit peaks at shorter times than those of photons with the same initial wavepacket transmitting through a vacuum. However, this apparent superluminality in time is accompanied by very low transmission probabilities. We discuss these observations, and related observations by other authors, in the context of published objections to the notion that tunneling can be superluminal in time. We find that many of these objections are not consistent with our observations, and conclude that post-selected (for transmission) distributions of arrival times can be superluminal. However, the low probability of tunneling means a photon will most likely be seen first and therefore the superluminality does not imply superluminal signaling.

publication date

  • September 1, 2020