Effect of Recycled Concrete Aggregate Properties on Mixture Proportions of Structural Concrete Academic Article uri icon

  •  
  • Overview
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study focuses on characterizing several recycled concrete aggregate (RCA) sources, developing concrete mixture proportions that incorporate RCA as coarse aggregate, and investigating the effect of coarse aggregate properties on the main mixture proportion parameters [i.e., cement content, water demand, and water–cement (w/c) ratio]. Four aggregate types were investigated: one control virgin aggregate source and three RCAs produced from the crushing of hardened concrete. Numerous aggregate tests, including density, absorption, abrasion resistance, adhered mortar content, and crushing value, were performed. Fourteen mixture proportions were developed with the use of three mixture proportion scenarios (control, direct replacement, and strength based) and two compressive strength levels (40 and 60 MPa). The effect of RCA on compressive strength and workability was evaluated by replacement of natural coarse aggregate with RCA. Contrary to numerous studies, one of the RCA concretes (RCA-1) had compressive strengths up to 12% higher than the equivalent control mixture. Mixture proportions (water, cement, and w/c ratio) were later adjusted to ensure that the RCA concretes had compressive strength and slump values similar to the control concretes. Variations in water demand, cement content, and w/c ratio could then be directly attributed to the properties of the RCA source. RCA-1 concrete required less cement (and a higher w/c ratio) to achieve strengths and slumps similar to the control concrete. The findings and recommendations of this research will assist concrete producers, engineers, and field technicians involved in the selection of RCA sources in developing mixture proportions for structural-grade RCA concrete.

publication date

  • January 2012