Pancreas adenocarcinoma CT texture analysis: comparison of 3D and 2D tumor segmentation techniques
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
PURPOSE: To determine equivalency of multi-slice 3D CTTA and single slice 2D CTTA of pancreas adenocarcinoma. METHODS: This retrospective study was research ethics board approved. Untreated pancreas adenocarcinomas were segmented on CT in 128 consecutive patients. Tumor segmentation was compared using two techniques: 3D segmentation by contouring all visible tumor in a 3D volume, and 2D segmentation using only a single axial image. First-order CTTA features including mean, minimum, maximum Hounsfield units (HU), standard deviation, skewness, kurtosis, entropy, and second-order gray-level co-occurrence matrix (GLCM) features homogeneity, contrast, correlation, entropy and dissimilarity were extracted. Median values were compared using the Mann-Whitney U test with Holm-Bonferroni correction. Kendall's Rank Correlation Tau assessed for correlation, and agreement was calculated using intraclass correlation coefficients (ICC) using a two-way model with single rating and absolute agreement. Statistical significance defined as P < 0.05. RESULTS: The median values of CTTA features differed significantly between 3 and 2D segmentations for all of the evaluated features except for mean attenuation, standard deviation and skewness (P = 0.2979 each). 3D and 2D segmentations had moderate correlation for mean attenuation (R = 0.69, P < 0.01), while all other features demonstrated poor to fair correlation. Agreement between 3 and 2D segmentations was good for mean attenuation (ICC: 0.87, P < 0.01), moderate for minimum (ICC: 0.65, P < 0.01) and standard deviation (ICC: 0.56, P < 0.01), and poor for all other features. CONCLUSION: While pancreas adenocarcinoma CTTA features obtained using 3D and 2D segmentation have multiple associations with clinically relevant outcomes, these segmentation techniques are likely not interchangeable other than for mean HU.