Home
Scholarly Works
Hausdorff limits of Rolle leaves
Journal article

Hausdorff limits of Rolle leaves

Abstract

Let $${\mathcal{R}}$$ be an o-minimal expansion of the real field. We introduce a class of Hausdorff limits, the T∞-limits over $${\mathcal{R}}$$, that do not in general fall under the scope of Marker and Steinhorn’s definability-of-types theorem. We prove that if $${\mathcal{R}}$$ admits analytic cell decomposition, then every T∞-limit over $${\mathcal{R}}$$ is definable in the pfaffian closure of $${\mathcal{R}}$$.

Authors

Lion J-M; Speissegger P

Journal

Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Vol. 107, No. 1, pp. 79–89

Publisher

Springer Nature

Publication Date

March 1, 2013

DOI

10.1007/s13398-012-0089-z

ISSN

1578-7303

Contact the Experts team