Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The presence of pharmaceuticals and personal care products (PPCPs) in water remains a concern due to their potential threat to environmental and human health. Advanced oxidation processes (AOPs) have been receiving attention in water treatment studies to remove PPCPs. However, most studies have been focused on pure water containing a limited number of substances. In this study, the photocatalytic efficiency of commercially available titanium dioxide nanoparticles (P25) and P25 modified by silver nanoparticles (Ag-P25) were compared for their ability to degrade 23 target PPCPs (2 μg L-1) in realistic water matrices containing natural organic matter (Suwanee River NOM, 6.12 mg L-1). The experiments were completed under ultraviolet-light emitting diode (UV-LED) illumination at 365 and 405 nm wavelengths, with the latter representing visible light exposure. Under 365 nm UV-LED treatment, 99% of the PPCPs were removed using both P25 and Ag-P25 photocatalysts within 180 min of the treatment duration. The number of PPCPs removed dropped to 57% and 53% for P25 and Ag-P25 respectively under the 405 nm UV-LED irradiation. Dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) measured at the end of the experiment indicated that the aromatic fraction of NOM was preferentially removed from the water matrix. Also, Ag-P25 was more effective in DOC removal than P25. The relationships of removal rate constants with physico-chemical properties of the substances were also determined. The molecular weight and charge were strongly associated with removal, with the former and the latter being positively and negatively correlated with the rate constants. The results of this work indicate that Ag-P25 is a promising photocatalyst to degrade persistent substances such as PPCPs and NOM even if they are present in a complex water matrix. The properties of individual substances can also be employed as an indication of their removal using this technology.

authors

  • Fattahi, Azar
  • Arlos, Maricor J
  • Bragg, Leslie M
  • Kowalczyk, Sarah
  • Liang, Robert
  • Schneider, Olivia M
  • Zhou, Norman
  • Servos, Mark R

publication date

  • January 2021