Home
Scholarly Works
Optimizing the scheduling of crew deployments in...
Journal article

Optimizing the scheduling of crew deployments in repetitive construction projects under uncertainty

Abstract

Purpose This paper presents the development of a novel model for optimizing the scheduling of crew deployments in repetitive construction projects while considering uncertainty in crew production rates. Design/methodology/approach The model computations are performed in two modules: (1) simulation module that integrates Monte Carlo simulation and a resource-driven scheduling technique to calculate the earliest crew deployment dates for all activities that fully comply with crew work continuity while considering uncertainty; and (2) optimization module that utilizes genetic algorithms to search for and identify optimal crew deployment plans that provide optimal trade-offs between project duration and crew deployment plan cost. Findings A real-life example of street renovation is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the stochastic scheduling of crew deployments in repetitive construction projects. Originality/value The original contribution of this research is creating a novel multiobjective stochastic scheduling optimization model for both serial and nonserial repetitive construction projects that is capable of identifying an optimal crew deployment plan that simultaneously minimizes project duration and crew deployment cost.

Authors

Hassan A; El-Rayes K; Attalla M

Journal

Engineering Construction & Architectural Management, Vol. 28, No. 6, pp. 1615–1634

Publisher

Emerald

Publication Date

June 25, 2021

DOI

10.1108/ecam-05-2020-0304

ISSN

0969-9988

Contact the Experts team