Home
Scholarly Works
Numerical simulation of pullout behavior of...
Conference

Numerical simulation of pullout behavior of embedded suction anchors in clay

Abstract

As the offshore wind power tends to locate farther from the coast for efficient generation of electricity, the interest of foundation systems of which construction sequence is economical and convenient under deep water circumstance is increasing. Mooring anchor system has been utilized as one of the most popular ways for anchoring of vessels or floating structures, and various types of anchor and mooring system have been investigated for large structures under diverse loading condition. In this paper, the pullout behavior of the modified embedded suction anchor (ESA) is studied using numerical analysis. The behavior of the embedded suction anchor is simulated using finite element method, and Adaptive Meshing (AM) technique approach incorporated in Abaqus/Explicit is applied to simulate the large deformation of soil caused by continuous pullout of anchor. The three dimensional modeling is performed to duplicate the round body shape with flanges of the embedded suction anchor. The anchor is assumed as rigid body and clay is considered as a linear elastic-perfectly plastic soil model with a Tresca yield criterion. The pullout capacities after different initial rotations show similar results with the maximum horizontal pullout capacity and the load inclination of 30ºor 40ºat the bottom point of the ESA has an advantage in that reduced pullout load can rotate the ESA.

Authors

Na S; Jang I; Oh M; Kwon O

Pagination

pp. 860-865

Publication Date

January 1, 2020

Conference proceedings

Proceedings of the 7th International Conference on Asian and Pacific Coasts Apac 2013

Contact the Experts team