Home
Scholarly Works
Lossless compression of continuous-tone images via...
Journal article

Lossless compression of continuous-tone images via context selection, quantization, and modeling

Abstract

Context modeling is an extensively studied paradigm for lossless compression of continuous-tone images. However, without careful algorithm design, high-order Markovian modeling of continuous-tone images is too expensive in both computational time and space to be practical. Furthermore, the exponential growth of the number of modeling states in the order of a Markov model can quickly lead to the problem of context dilution; that is, an image may not have enough samples for good estimates of conditional probabilities associated with the modeling states. New techniques for context modeling of DPCM errors are introduced that can exploit context-dependent DPCM error structures to the benefit of compression. New algorithmic techniques of forming and quantizing modeling contexts are also developed to alleviate the problem of context dilution and reduce both time and space complexities. By innovative formation, quantization, and use of modeling contexts, the proposed lossless image coder has a highly competitive compression performance and yet remains practical.

Authors

Wu X

Journal

IEEE Transactions on Image Processing, Vol. 6, No. 5, pp. 656–664

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

December 1, 1997

DOI

10.1109/83.568923

ISSN

1057-7149

Contact the Experts team