Home
Scholarly Works
Behavioral game theoretic models: A Bayesian...
Conference

Behavioral game theoretic models: A Bayesian framework for parameter analysis

Abstract

Studies in experimental economics have consistently demonstrated that Nash equilibrium is a poor description of human players' behavior in unrepeated normal-form games. Behavioral game theory offers alternative models that more accurately describe human behavior in these settings. These models typically depend upon the values of exogenous parameters, which are estimated based on experimental data. We describe methods for deriving and analyzing the posterior distributions over the parameters of such models, and apply these techniques to study two popular models (Poisson-CH and QLk), the latter of which we previously showed to be the best-performing existing model in a comparison of four widely-studied behavioral models [22]. Drawing on a large set of publicly available experimental data, we derive concrete recommendations for the parameters that should be used with Poisson-CH, contradicting previous recommendations in the literature. We also uncover anomalies in QLk that lead us to develop a new, simpler, and better-performing family of models. Copyright © 2012, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Authors

Wright JR; Leyton-Brown K

Volume

2

Pagination

pp. 856-863

Publication Date

January 1, 2012

Conference proceedings

11th International Conference on Autonomous Agents and Multiagent Systems 2012 Aamas 2012 Innovative Applications Track

Contact the Experts team