The Use of Random Forests to Identify Brain Regions on Amyloid and FDG PET Associated With MoCA Score
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
PURPOSE: The aim of this study was to evaluate random forests (RFs) to identify ROIs on F-florbetapir and F-FDG PET associated with Montreal Cognitive Assessment (MoCA) score. MATERIALS AND METHODS: Fifty-seven subjects with significant white matter disease presenting with either transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, enrolled in a multicenter prospective observational trial, had MoCA and F-florbetapir PET; 55 had F-FDG PET. Scans were processed using the MINC toolkit to generate SUV ratios, normalized to cerebellar gray matter (F-florbetapir PET), or pons (F-FDG PET). SUV ratio data and MoCA score were used for supervised training of RFs programmed in MATLAB. RESULTS: F-Florbetapir PETs were randomly divided into 40 training and 17 testing scans; 100 RFs of 1000 trees, constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: right posterior cingulate gyrus, right anterior cingulate gyrus, left precuneus, left posterior cingulate gyrus, and right precuneus. Amyloid increased with decreasing MoCA score. F-FDG PETs were randomly divided into 40 training and 15 testing scans; 100 RFs of 1000 trees, each tree constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: left fusiform gyrus, left precuneus, left posterior cingulate gyrus, right precuneus, and left middle orbitofrontal gyrus. F-FDG decreased with decreasing MoCA score. CONCLUSIONS: Random forests help pinpoint clinically relevant ROIs associated with MoCA score; amyloid increased and F-FDG decreased with decreasing MoCA score, most significantly in the posterior cingulate gyrus.