Temporal–Spatial Analysis of the Immune Response in a Murine Model of Ovalbumin-Induced Airways Inflammation
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The objective of this study was to define phenotypic changes of antigen-presenting cells (APCs) and T cells in a murine model of antigen-induced airways inflammation that involves intraperitoneal sensitization with ovalbumin (OVA)/adjuvant followed by antigen aerosolization. We investigated the APC and T-cell compartments both after sensitization (primary immune response) and after challenge (secondary immune response) at the thoracic lymph nodes (initiation site) and the lung (effector site). Our findings document a major cellular expansion in the lymph nodes after both sensitization and challenge. After sensitization, this expansion was comprised mainly of B cells, a considerable proportion of which expressed B7.2. At this time, T cells were markedly expanded and activated as assessed by CD69 expression; further, although GATA-3 and signal transducer and activator of transcription-6 were expressed at this time point, expression of interleukin (IL)-4, IL-5, and IL-13 messenger RNA (mRNA) levels were marginal. However, in vitro stimulation of lymph-node cells with OVA led to cytokine production. In contrast, 24 h after challenge, but not after sensitization, there was a major expansion of dendritic cells and macrophages in the lungs. This expansion was associated with enhanced expression of both B7.1 and B7.2. We also observed expansion of activated CD3(+)/CD4(+) T cells expressing the T helper-2-associated marker T1/ST2 in the lung, most notably 5 d after challenge. Further, IL-4, IL-5, and IL-13, but not interferon-gamma mRNA were expressed at high levels 3 h after challenge. This study helps to elucidate the "geography" of immune responses generated in a conventional murine model of allergic airways inflammation.