The lung cytokine microenvironment influences molecular events in the lymph nodes during Th1 and Th2 respiratory mucosal sensitization to antigen in vivo Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Originally defined by their patterns of cytokine production, Th1 and Th2 cells have been described more recently to express other genes differentially as well, at least in vitro. In this study we compared the expression of Th1- and Th2-associated genes directly during in vivo sensitization to ovalbumin (OVA) in Th1- and Th2-polarized models of airways inflammation. Th1-polarized airway inflammation was achieved by the intranasal instillation of adenoviral vectors (Ad) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-12, followed by daily aerosolizations of OVA; instillation of Ad/GM-CSF alone with OVA aerosolization led to Th2-polarized responses. Lymph nodes were obtained at various time-points, RNA extracted, and analysed by real-time quantitative polymerase chain reaction (PCR). Consistent with reports from in vitro and human studies, mice undergoing Th1-polarized inflammation showed preferential expression of the transcription factor t-bet, the chemokines IFN-gamma inducible protein (IP)-10 and macrophage inflammatory protein 1 alpha (MIP-1-alpha), and the chemokine receptor CCR5. In contrast, the transcription factor GATA-3, the chemokines I-309 and thymus and activation regulated chemokine (TARC), and the chemokine receptors CCR3 and CCR4 were preferentially expressed in the Th2 model. Importantly, we also show that Ad/transgene expression remains compartmentalized to the lung after intranasal instillation. Flow cytometric analysis of lung myeloid dendritic cells indicated that B7.1 was expressed more strongly in the Th1 model than in the Th2 model. These studies provide a direct comparison of gene expression in in vivo Th1- and Th2-polarized models, and demonstrate that molecular events in the lymph nodes can be altered fundamentally by cytokine expression at distant mucosal sites.

publication date

  • November 2004

has subject area