Stabilizing Phases of Block Copolymers with Gigantic Spheres via Designed Chain Architectures Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • It is generally believed that the spherical domains self-assembled from AB-type block copolymers are composed of the minority A blocks with a volume fraction of fA < 1/2. Breaking this generic rule so that the spherical domains are formed by the majority A blocks (fA > 1/2) requires mechanisms to drastically expand the stable region of spherical packing phases. Self-consistent field theory predicts that dendron-like AB-type block copolymers, composed of G - 1 generations of A blocks connected with the outermost generation of B blocks, exhibit a stable region of spherical packing phases extending to fA ∼ 0.7. The extremely expanded spherical regions shed light on the mechanisms governing the self-assembly of amphiphilic macromolecules, as well as provide opportunities to engineer complex spherical packing phases.

publication date

  • May 19, 2020