Mechanisms of interaction among subinhibitory concentrations of antibiotics, human polymorphonuclear neutrophils, and gram-negative bacilli Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Our hypothesis was that pretreatment of bacteria with subinhibitory concentrations (sub-MICs) of antibiotics enhances the susceptibility of the organisms to killing by human polymorphonuclear neutrophils (PMNs). Our purpose was to study a variety of drugs with different mechanisms of action and to determine whether the mechanism and locus of action altered the sub-MIC effect. The following outcome measures were used: ingestion and killing of bacteria by PMNs, bacterial killing in the absence of phagosome formation, and binding requirements of the bacteria to PMNs. The antibiotics used were representative of a variety of classes, including beta-lactams (piperacillin and imipenem) and quinolones (ciprofloxacin). Bacterial uptake and killing were measured by using standard techniques, and results were analyzed by using the analysis-of-variance technique and Dunnett's t test. Pretreatment of Escherichia coli with all drugs showed significantly enhanced killing of bacteria by PMNs, which was independent of ingestion by the phagocytes. Even in the absence of phagosome formation, statistically significant killing persisted with piperacillin-pretreated bacteria but not with imipenem- or ciprofloxacin-pretreated organisms. The opsonization experiments showed that contact between bacteria and PMNs was necessary for killing to occur. The sub-MIC effect appears to be independent of the locus or mechanism of action of the antibiotic. It results in enhanced killing by PMNs which is independent of ingestion and also may persist even in the absence of phagosome formation. Killing is dependent upon specific contact between bacteria and an intact phagocyte.

publication date

  • July 1991