Integral stochastic ordering of the multivariate normal mean-variance and the skew-normal scale-shape mixture models Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • ‎In this paper‎, ‎we introduce integral stochastic ordering of two‎ most important classes of distributions that are commonly used to fit data possessing high values of skewness and (or)‎ ‎kurtosis‎. ‎The first one is based on the selection distributions started by the univariate skew-normal distribution‎. ‎A broad‎, ‎flexible and newest class in this area is the scale and shape mixture of multivariate skew-normal distributions‎. ‎The second one is the general class of Normal Mean-Variance Mixture distributions‎. ‎We then derive necessary and sufficient conditions for comparing the random vectors from these two classes of distributions‎. ‎The integral orders considered here are the usual‎, ‎concordance‎, ‎supermodular‎, ‎convex‎, ‎increasing convex and directionally convex stochastic orders‎. ‎Moreover‎, ‎for bivariate random vectors‎, ‎in the sense of stop-loss and bivariate concordance stochastic orders‎, ‎the dependence strength of random portfolios is characterized in terms of order of correlations‎.

publication date

  • January 1, 2020