A two weight weak type inequality for fractional integrals Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • For 1 > p q > , 0 > α > n 1 > p \leqslant q > \infty ,0 > \alpha > n and w ( x ) , υ ( x ) w(x),\upsilon (x) nonnegative weight functions on R n {R^n} we show that the weak type inequality \[ { T α f > λ } w ( x ) d x A λ q ( | f ( x ) | p υ ( x ) d x ) q / p \int _{\{ {T_\alpha }f > \lambda \} }\,w(x)\;dx \leqslant A{\lambda ^{ - q}}{\left ( \int |f(x){|^p}\;\upsilon (x)\;dx \right )^{q/p}} \] holds for all f 0 f \geqslant 0 if and only if \[ Q [ T α ( χ Q w ) ( x ) ] p υ ( x ) 1 p d x B ( Q w ) p / q > \int _Q\,[{T_\alpha }({\chi _Q}w)\,(x)]^{p’}\upsilon (x)^{1 - p’}\,dx \leqslant B\left ( \int _Qw \right )^{p’/q’} > \infty \] for all cubes Q Q in R n {R^n} . Here T α {T_\alpha } denotes the fractional integral of order α , T α f ( x ) = | x y | α n f ( y ) d y \alpha ,{T_\alpha }f(x) = \int |x - y{|^{\alpha - n}}f(y)\,dy . More generally we can replace T α {T_\alpha } by any suitable convolution operator with radial kernel decreasing in | x | |x| .

publication date

  • January 1, 1984