Weighted inequalities for the one-sided Hardy-Littlewood maximal functions Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Let M + f ( x ) = sup h > 0 ( 1 / h ) x x + h | f ( t ) | d t {M^ + }f(x) = {\sup _{h > 0}}(1/h)\int _x^{x + h} {|f(t)|\,dt} denote the one-sided maximal function of Hardy and Littlewood. For w ( x ) 0 w(x) \geqslant 0 on R R and 1 > p > 1 > p > \infty , we show that M + {M^ + } is bounded on L p ( w ) {L^p}(w) if and only if w w satisfies the one-sided A p {A_p} condition: \[ ( A p + ) [ 1 h a h a w ( x ) d x ] [ 1 h a a + h w ( x ) 1 / ( p 1 ) d x ] p 1 C \left ( {A_p^ + } \right )\qquad \left [ {\frac {1} {h}\int _{a - h}^a {w(x)dx} } \right ]{\left [ {\frac {1} {h}\int _a^{a + h} {w{{(x)}^{ - 1/(p - 1)}}dx} } \right ]^{p - 1}} \leqslant C \] for all real a a and positive h h . If in addition v ( x ) 0 v(x) \geqslant 0 and σ = v 1 / ( p 1 ) \sigma = {v^{ - 1/(p - 1)}} ,then M + {M^ + } is bounded from L p ( v ) {L^p}(v) to L p ( w ) {L^p}(w) if and only if \[ I [ M + ( χ I σ ) ] p w C I σ > \int _I {{{[{M^ + }({\chi _I}\sigma )]}^p}w \leqslant C\int _I {\sigma > \infty } } \] for all intervals I = ( a , b ) I = (a,b) such that a w > 0 \int _{ - \infty }^a {w > 0} . The corresponding weak type inequality is also characterized. Further properties of A p + A_p^ + weights, such as A p + A p ε + A_p^ + \Rightarrow A_{p - \varepsilon }^ + and A p + = ( A 1 + ) ( A 1 ) 1 p A_p^ + = (A_1^ + ){(A_1^ - )^{1 - p}} , are established.

publication date

  • January 1, 1986