The Heat Transfer Characteristics of Exhaust Gas Recirculation (EGR) Cooling Devices Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A one-dimensional steady state model was developed to predict the heat transfer performance of a shell (liquid)-and-tube (gas) heat exchanger used as a cooling device for exhaust gas recirculation (EGR) application where there is a significant temperature drop across the device. The predictions of the model results were compared with experimental measurements and the trends were found to be in good agreement for most of the transitional and turbulent regimes. The results showed that the exit gas temperature increases with increasing gas mass flow rate at fixed gas inlet temperature and coolant flow rate. It was also found that the exit gas temperature was essentially independent of the coolant flow rate for the typical operating range but did depend on the coolant inlet temperature. It was observed that the pressure drop across the cooling device was not a strong function of the gas inlet temperature. The heat-transfer effectiveness of the cooling device was found to slightly depend on the gas mass flow rate and inlet gas temperature. A preliminary analysis showed that fouling in the EGR cooling device can have a significant effect on both the thermal and hydraulic performance of the cooling device.

publication date

  • January 1, 2002