Home
Scholarly Works
Canonical Prefixes of Petri Net Unfoldings
Conference

Canonical Prefixes of Petri Net Unfoldings

Abstract

In this paper, we develop a general technique for truncating Petri net unfoldings, parameterised according to the level of information about the original unfolding one wants to preserve. Moreover, we propose a new notion of completeness of a truncated unfolding. A key aspect of our approach is an algorithm- independent notion of cut-off events, used to truncate a Petri net unfolding. Such a notion is based on a cutting context and results in the unique canonical prefix of the unfolding. Canonical prefixes are complete in the new, stronger sense, and we provide necessary and sufficient conditions for its finiteness, as well as upper bounds on its size in certain cases. A surprising result is that after suitable generalisation, the standard unfolding algorithm presented in [5], and the parallel unfolding algorithm proposed in [8], despite being non-deterministic, generate the canonical prefix. This gives an alternative correctness proof for the former algorithm, and a new (much simpler) proof for the latter one.

Authors

Khomenko V; Koutny M; Vogler W

Series

Lecture Notes in Computer Science

Volume

2404

Pagination

pp. 582-595

Publisher

Springer Nature

Publication Date

January 1, 2002

DOI

10.1007/3-540-45657-0_49

Conference proceedings

Lecture Notes in Computer Science

ISSN

0302-9743

Labels

View published work (Non-McMaster Users)

Contact the Experts team