A double quantum 129Xe NMR experiment for probing xenon in multiply-occupied cavities of solid-state inclusion compounds Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A method is presented for detecting multiple xenon atoms in cavities of solid-state inclusion compounds using (129)Xe double quantum NMR spectroscopy. Double quantum filtered (129)Xe NMR spectra, performed on the xenon clathrate of Dianin's compound were obtained under high-resolution Magic-Angle Spinning (MAS) conditions, by recoupling the weak (129)Xe-(129)Xe dipole-dipole couplings that exist between xenon atoms in close spatial proximity. Because the (129)Xe-(129)Xe dipole-dipole couplings are generally weak due to dynamics of the atoms and to large internuclear separations, and since the (129)Xe Chemical Shift Anisotropy (CSA) tends to be relatively large, a very robust dipolar recoupling sequence was necessary, with the symmetry-based SR26 dipolar recoupling sequence proving appropriate. We have also attempted to measure the (129)Xe-(129)Xe dipole-dipole coupling constant between xenon atoms in the cavities of the xenon-Dianin's compound clathrate and have found that the dynamics of the xenon atoms (as investigated with molecular dynamics simulations) as well as (129)Xe multiple spin effects complicate the analysis. The double quantum NMR method is useful for peak assignment in (129)Xe NMR spectra because peaks arising from different types of absorption/inclusion sites or from different levels of occupancy of single sites can be distinguished. The method can also help resolve ambiguities in diffraction experiments concerning the order/disorder in a material.

publication date

  • 2007