Home
Scholarly Works
Formation and Regulation of Multicompartment...
Journal article

Formation and Regulation of Multicompartment Vesicles from Cyclic Diblock Copolymer Solutions: A Simulation Study

Abstract

The self-assembly of a cyclic AB copolymer system with relatively long A blocks and short B blocks in B-selective solvents is investigated using a simulated annealing method. By investigating the effect of the lengths and solubilities of A and B blocks (N A and N B, εAS and εBS), the incompatibility between A and B blocks (εAB), as well as the polymer concentration (C p) and the conditions for the formation of multicompartment vesicles in cyclic diblock copolymer solutions, is predicted. The phase diagrams in terms of N B, εAS, and C p are constructed. The mechanism of the morphological transition is elucidated. It is shown that for cyclic copolymers the change in the above factors relating to the polymer and solvent properties all can lead to the transition from simple vesicles to multicompartment vesicles, but two different transition mechanisms are revealed. In addition, our simulations demonstrate that the self-assembly of cyclic copolymers could provide a powerful strategy for regulating the compartment number and the wall thickness of the multicompartment vesicles by adjusting the block solubilities and block lengths, respectively. These findings will facilitate the application of multicompartment architectures in cell mimicry, drug delivery, and nanoreactors.

Authors

Song Y; Jiang R; Wang Z; Yin Y; Li B; Shi A-C

Journal

ACS Omega, Vol. 5, No. 16, pp. 9366–9376

Publisher

American Chemical Society (ACS)

Publication Date

April 28, 2020

DOI

10.1021/acsomega.0c00374

ISSN

2470-1343

Contact the Experts team