Home
Scholarly Works
New variational characterization of periodic waves...
Journal article

New variational characterization of periodic waves in the fractional Korteweg–de Vries equation

Abstract

Periodic waves in the fractional Korteweg–de Vries equation have been previously characterized as constrained minimizers of energy subject to fixed momentum and mass. Here we characterize these periodic waves as constrained minimizers of the quadratic form of energy subject to fixed cubic part of energy and the zero mean. This new variational characterization allows us to unfold the existence region of travelling periodic waves and to give a sharp criterion for spectral stability of periodic waves with respect to perturbations of the same period. The sharp stability criterion is given by the monotonicity of the map from the wave speed to the wave momentum similarly to the stability criterion for solitary waves.

Authors

Natali F; Le U; Pelinovsky DE

Journal

Nonlinearity, Vol. 33, No. 4, pp. 1956–1986

Publisher

IOP Publishing

Publication Date

April 1, 2020

DOI

10.1088/1361-6544/ab6a79

ISSN

0951-7715

Contact the Experts team