Phase Distribution in Buoyancy-Driven Bubbly Flows Conference Paper uri icon

  •  
  • Overview
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study aims to investigate the effect of topology change on the rise velocity of bubbly flows and the phase distribution in a channel at a moderate Reynolds number. A front tracking/finite difference method is used to solve the momentum equation inside and outside deformable bubbles. It is found that bubble/bubble coalescence enhances the average rise velocity of the bubbles dramatically and also increases the fluctuations of the liquid velocity. Examination of the pair distribution function shows that the flow becomes more non-homogeneous as a result of topology change.

publication date

  • January 1, 2002