Predictive Values of Anthropometric Measurements for Cardiometabolic Risk Factors and Cardiovascular Diseases Among 44 048 Chinese Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Background The predictive value of adiposity indices and the newly developed index for cardiometabolic risk factors and cardiovascular diseases ( CVD s) remains unclear in the Chinese population. This study aimed to compare the predictive value of A Body Shape Index with other 5 conventional obesity‐related anthropometric indices (body mass index, waist circumference, hip circumference, waist‐to‐hip ratio, waist‐to‐height ratio) in Chinese population. Methods and Results A total of 44 048 participants in the study were derived from the baseline data of the PURE ‐China (Prospective Urban and Rural Epidemiology) study in China. All participants’ anthropometric parameters, CVD s, and risk factors (dyslipidemia, abnormal blood pressure, and hyperglycemia) were collected by standard procedures. Multivariable logistic regression models and receiver operator characteristic curve analysis were used to evaluate the predictive values of obesity‐related anthropometric indices to the cardiometabolic risk factors and CVD s. A positive association was observed between each anthropometric index and cardiometabolic risk factors and CVD s in all models ( P <0.001). Compared with other anthropometric indices (body mass index, waist circumference, hip circumference, waist‐to‐hip ratio, and A Body Shape Index), waist‐to‐height ratio had significantly higher areas under the curve ( AUC s) for predicting dyslipidemia ( AUC s: 0.646, sensitivity: 65%, specificity: 44%), hyperglycemia ( AUC s: 0.595, sensitivity: 60%, specificity: 45%), and CVD s ( AUC s: 0.619, sensitivity: 59%, specificity: 41%). Waist circumference showed the best prediction for abnormal blood pressure ( AUC s: 0.671, sensitivity: 66%, specificity: 40%) compared with other anthropometric indices. However, the new body shape index did not show a better prediction to either cardiometabolic risk factors or CVD s than that of any other traditional obesity‐related indices. Conclusions Waist‐to‐height ratio appeared to be the best indicator for dyslipidemia, hyperglycemia, and CVD s, while waist circumference had a better prediction for abnormal blood pressure.

authors

  • Liu, Jia
  • Tse, Lap Ah
  • Liu, Zhiguang
  • Rangarajan, Sumathy
  • Hu, Bo
  • Yin, Lu
  • Leong, Darryl
  • Li, Wei
  • Liu, Bing
  • Chen, Chunming
  • Jin, Guo
  • Zhang, Hongye
  • Chen, Hui
  • Bo, Jian
  • Li, Jian
  • Li, Juan
  • Yang, Jun
  • Wang, Kean
  • Zhang, Li
  • Deng, Qing
  • Bing, Ren
  • Chen, Tao
  • Xu, Tao
  • Wang, Wei
  • Zhao, Wenhua
  • Chang, Xiaohong
  • Cheng, Xiaoru
  • He, Xinye
  • Hou, Xixin
  • Wang, Xingyu
  • Bai, Xiulin
  • Zhao, Xiuwen
  • Liu, Xu
  • Jia, Xuan
  • Wang, Yang
  • Sun, Yi
  • Zhai, Yi
  • Chen, Di
  • Jin, Hui
  • Tian, Jiwen
  • Ma, Yumin
  • Li, Yindong
  • He, Chao
  • You, Kai
  • Zhang, Songjian
  • Tian, Xiuzhen
  • Xu, Xu
  • Di, Jinling
  • Wu, Jianquan
  • Wang, Mei
  • Zhou, Qiang
  • Han, Aiying
  • Cao, Minzhi
  • Jiang, Weiping
  • Qiang, Deren
  • Qin, Jing
  • Qian, Shan
  • Shi, Suyi
  • Zhou, Yihong
  • Liu, Zhengrong
  • Wan, Ming
  • Tang, Jinhua
  • Mo, Yongzhen
  • Bian, Rongwen
  • Lou, Qinglin
  • Hu, Lihua
  • Xiong, Shuwei
  • Zhong, Yan
  • Li, Ning
  • Tang, Xincheng
  • Ye, Shuli
  • Li, Chunyi
  • Li, Yujin
  • Wang, Qiuyang
  • Fu, Xiaoli
  • Guo, Baoxia
  • Feng, Huilian
  • Xu, Lihui
  • Ma, Haibin
  • Wu, Ruiqi
  • Wang, Yali
  • Liu, Hongze
  • Ma, Yurong
  • Yuan, Bo
  • Zhao, Qian
  • Xu, Guofan
  • He, Hui
  • Liu, Jiankang
  • Wang, Xin
  • Chen, Ming
  • Deng, Wenqing
  • Liu, Zhendong
  • Zhang, Hua
  • Sun, Shangwen
  • Wang, Shujian
  • Zhao, Yingkin
  • Diao, Yutao
  • Shi, Xuezheng
  • Wei, Chuanrui
  • Wang, Jufang
  • Liu, Guoqin
  • Wu, Cuiying
  • Ma, Guilan
  • Wei, Hua
  • Wang, Junying
  • Bao, Xiongfei
  • Tang, Yue
  • Zhi, Yahong
  • Wang, Ailing
  • Wang, Huijuan
  • Liu, Jianna
  • Liu, Qinzhou
  • Wang, Rong
  • Aili, Aideer
  • Wula, Ayoufumiti
  • Bula, Aibi
  • Yang, Dongmei
  • Wen, Qian
  • Xiao, Yize
  • Shi, Qingping
  • Shao, Ying
  • Li, Kehua
  • Bai, Wuba
  • Yang, Jinkui
  • Liu, Huaxing
  • Yang, Shunyun

publication date

  • August 20, 2019

has subject area