Single- and multiple-pulse femtosecond laser irradiation of iron, copper, and aluminum
Conferences
Overview
Identity
Additional Document Info
View All
Overview
abstract
Femtosecond lasers have proven to be very useful tools for the microstructuring of solid targets [1, 2, 3]. The ablation of metals using conventional lasers is accompanied by formation of substantial heat-affected zones. Extremely fast energy deposition and rapid ablation with small heat-affected zones make it possible to achieve controllable ablation and production of high-quality structures in metallic materials. A significant improvement in this field has thus become possible because of ultrashort pulse lasers. With ultrashort-pulse laser systems, measurements of laser-induced damage and ablation thresholds on metals have been performed for both a very broad range of pulse durations and wavelength regions. Comprehensive ablation experiments of metals such as Cu, Al, Fe, Au, and Ag by using solid state and excimer femtosecond have been reported [1-5]. In this study, we investigated the effects of femtosecond laser irradiation on metals via study of scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).