Misalignment between the magnetic dipole moment and the cell axis in the magnetotactic bacteriumMagnetospirillum magneticumAMB-1
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
While most quantitative studies of the motion of magnetotactic bacteria rely on the premise that the cells' magnetic dipole moment is aligned with their direction of motility, this assumption has so far rarely been challenged. Here we use phase contrast microscopy to detect the rotational diffusion of non-motile cells of Magnetospirillum magneticum AMB-1 around their magnetic moment, showing that in this species the magnetic dipole moment is, in fact, not exactly aligned with the cell body axis. From the cell rotational trajectories, we are able to infer the misalignment between cell magnetic moment and body axis with a precision of better than 1°, showing that it is, on average, 6°, and can be as high as 20°. We propose a method to correct for this misalignment, and perform a non-biased measurement of the magnetic moment of single cells based on the analysis of their orientation distribution. Using this correction, we show that magnetic moment strongly correlates with cell length. The existence of a range of misalignments between magnetic moment and cell axis in a population implies that the orientation and trajectories of magnetotactic bacteria placed in external magnetic fields is more complex than generally assumed, and might show some important cell-to-cell differences.