Estimates of the current and future burden of lung cancer attributable to residential radon exposure in Canada Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Radon is widely recognized as a human carcinogen and findings from epidemiologic studies support a causal association between residential radon exposure and lung cancer risk. Our aim was to derive population attributable risks (PAR) to estimate the numbers of incident lung cancer due to residential radon exposure in Canada in 2015. Potential impact fractions for 2042 were estimated based on a series of counterfactuals. A meta-analysis was conducted to estimate the relative risk of lung cancer per 100 Becquerels (Bq)/m3 increase in residential radon exposure, with a pooled estimate of 1.16 (95% CI: 1.07-1.24). The population distribution of annual residential radon exposure was estimated based on a national survey with adjustment for changes in the population distribution over time, the proportion of Canadians living in high-rise buildings, and to reflect annual rather than winter levels. An estimated 6.9% of lung cancer cases in 2015 were attributable to exposure to residential radon, accounting for 1741 attributable cases. If mitigation efforts were to reduce all residential radon exposures that are above current Canadian policy guidelines of 200 Bq/m3 (3% of Canadians) to 50 Bq/m3, 293 cases could be prevented in 2042, and 2322 cumulative cases could be prevented between 2016 and 2042. Our results show that mitigation that exclusively targets Canadian homes with radon exposures above current Canadian guidelines may not greatly alleviate the future projected lung cancer burden. Mitigation of residential radon levels below current guidelines may be required to substantially reduce the overall lung cancer burden in the Canadian population.

authors

  • Walter, Stephen
  • Gogna, Priyanka
  • Narain, Tasha A
  • O'Sullivan, Dylan E
  • Villeneuve, Paul J
  • Demers, Paul A
  • Hystad, Perry
  • Brenner, Darren R
  • Friedenreich, Christine M
  • King, Will D

publication date

  • May 2019