Male and female bees show large differences in floral preference Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: Intraspecific variation in foraging niche can drive food web dynamics and ecosystem processes. In particular, male and female animals can exhibit different, often cascading, impacts on their interaction partners. Despite this, studies of plant-pollinator interaction networks have focused on the partitioning of the floral community between pollinator species, with little attention paid to intraspecific variation in plant preference between male and female bees. We designed a field study to evaluate the strength and prevalence of sexually dimorphic foraging, and particularly resource preferences, in bees. STUDY DESIGN: We observed bees visiting flowers in semi-natural meadows in New Jersey, USA. To detect differences in flower use against a shared background of resource (flower) availability, we maximized the number of interactions observed within narrow spatio-temporal windows. To distinguish observed differences in bee use of flower species, which can reflect abundance patterns and sampling effects, from underlying differences in bee preferences, we analyzed our data with both a permutation-based null model and random effects models. FINDINGS: We found that the diets of male and female bees of the same species were often dissimilar as the diets of different species of bees. Furthermore, we demonstrate differences in preference between male and female bees. We show that intraspecific differences in preference can be robustly identified among hundreds of unique species-species interactions, without precisely quantifying resource availability, and despite high phenological turnover of both bees and plant bloom. Given the large differences in both flower use and preferences between male and female bees, ecological sex differences should be integrated into studies of bee demography, plant pollination, and coevolutionary relationships between flowers and insects.

publication date

  • 2019