TLR2 Plays a Pivotal Role in Mediating Mucosal Serotonin Production in the Gut Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Serotonin (5-hydroxytryptamine [5-HT]) is a key enteric signaling molecule that mediates various physiological processes in the gut. Enterochromaffin (EC) cells in the mucosal layer of the gut are the main source of 5-HT in the body and are situated in close proximity to the gut microbiota. In this study, we identify a pivotal role of TLR2 in 5-HT production in the gut. Antibiotic treatment reduces EC cell numbers and 5-HT levels in naive C57BL/6 mice, which is associated with downregulation of TLR2 expression but not TLR1 or TLR4. TLR2-deficient (Tlr2−/−) and Myd88−/− mice express lower EC cell numbers and 5-HT levels, whereas treatment with TLR2/1 agonist upregulates 5-HT production in irradiated C57BL/6 mice, which are reconstituted with Tlr2−/− bone marrow cells, and in germ-free mice. Human EC cell line (BON-1 cells) release higher 5-HT upon TLR2/1 agonist via NF-κB pathway. Tlr2−/− mice and anti-TLR2 Ab–treated mice infected with enteric parasite, Trichuris muris, exhibited attenuated 5-HT production, compared with infected wild-type mice. Moreover, excretory-secretory products from T. muris induce higher 5-HT production in BON-1 cells via TLR2 in a dose-dependent manner, whereby the effect of excretory-secretory products is abrogated by TLR2 antagonist. These findings not only suggest an important role of TLR2 in mucosal 5-HT production in the gut by resident microbiota as well as by a nematode parasite but also provide, to our knowledge, novel information on the potential benefits of targeting TLR2 in various gut disorders that exhibit aberrant 5-HT signaling.

publication date

  • May 15, 2019