Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Reliable species identification methods are important for industrial environmental monitoring programs. Probe based real-time quantitative polymerase chain reaction (qPCR) provides an accurate, cost-effective and high-throughput method for species identification. Here we present the development and validation of species-specific primers and probes for the cytochrome c oxidase (COI) gene for the identification of eight ecologically and economically important freshwater fish species: lake whitefish (Coregonus clupeaformis), yellow perch (Perca flavescens), rainbow smelt (Osmerus mordax), brook trout (Salvelinus fontinalis), smallmouth bass (Micropterus dolomieu), round whitefish (Prosopium cylindraceum), spottail shiner (Notropis hudsonius) and deepwater sculpin (Myoxocephalus thompsonii). In order to identify novel primer-probe sets with maximum species-specificity, two separate primer-probe design criteria were employed. Highest ranked primer-probe sets from both methods were assayed to identify sequences that demonstrated highest specificity. Specificity was determined using control species from same genus and non-target species from different genus. Selected primer-probe sets were optimized for annealing temperature and primer-probe concentrations to identify minimum reagent parameters. The selected primer-probe sets were highly sensitive, with DNA concentrations as low as 1 ng adequate for positive species identification. A decoder algorithm was developed based on the cumulative qPCR results that allowed for full automation of species identification. Blinded experiments revealed that the combination of the species-specific primer/probes sets with the automated species decoder resulted in target species identification with 100% accuracy. We also conducted a cost/time comparison analysis between the qPCR assays established in this study with other species identification methods. The qPCR technique was the most cost-effective and least time consuming method of species identification. In summary, probe-based multiplex qPCR assays provide a rapid and accurate method for freshwater fish species identification, and the methodology established in this study can be utilized for various other species identification initiatives.