Interaction Model for “Shelled Particles” and Small-Strain Modulus of Granular Materials Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The elastic modulus of a granular assembly composed of spherical particles in Hertzian contact usually has a scaling law with the mean effective pressure p as K∼G∼p1/3. Laboratory test results, however, reveal that the value of the exponent is generally around 1/2 for most sands and gravels, but it is much higher for reclaimed asphalt concrete composed of particles coated by a thin layer of asphalt binder and even approaching unity for aggregates consisting of crushed stone. By assuming that a particle is coated with a thin soft deteriorated layer, an energy-based simple approach is proposed for thin-coating contact problems. Based on the features of the surface layer, the normal contact stiffness between two spheres varies with the contact force following kn∼Fnm and m∈[1/3,  1], with m=1/3 for Hertzian contact, m=1/2 soft thin-coating contact, m=2/3 for incompressible soft thin-coating, and m=1 for spheres with rough surfaces. Correspondingly, the elastic modulus of a random granular packing is proportional to pm with m∈[1/3,  1].

publication date

  • October 1, 2018