Differential contractile actions of reactive oxygen species on rat aorta: Selective activation of ATP receptor by H2O2
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
This study aims to examine the effects of different reactive oxygen species (ROS) on the resting tension of endothelium-denuded rat aortic rings. In these preparations, H2O2 (30 microM) induced a fast and transient contraction, which could be abolished by pretreatment of catalase (800 U/ml), but not affected by superoxide anion scavenger, superoxide dismutase (SOD; 150 U/ml) or the hydroxyl free radical scavenger, DMSO/mannitol (each 3 mM). In contrast, pyrogallol, a putative superoxide anion donor, induced a biphasic contraction, which could be abolished by SOD, but not by catalase or DMSO/mannitol. Unlike H2O2 and pyrogallol, Vitamin C(VitC)/Fe2+ (each 100 microM), a commonly used hydroxyl radical-generating system, triggered a tonic contraction which could be prevented by DMSO/mannitol, but not by SOD or catalase. Interestingly, H2O2-induced contraction could be concentration-dependently (10-100 microM) inhibited by suramin and reactive blue-2 (RB-2), two widely used ATP receptor antagonists. On the other hand, suramin or RB-2, at concentration up to 100 microM, affected neither pyrogallol nor VitC/Fe2+-induced contraction. In conclusion, we showed for the first time that different ROS could contract rat aorta with different mechanisms of action, and H2O2 elicits a transient contraction probably as a result of the ATP receptor activation.