Local relapse of nasopharyngeal cancer and Voxel-based analysis of FMISO uptake using PET with semiconductor detectors Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: Hypoxic cancer cells are thought to be radioresistant and could impact local recurrence after radiotherapy (RT). One of the major hypoxic imaging modalities is [18F]fluoromisonidazole positron emission tomography (FMISO-PET). High FMISO uptake before RT could indicate radioresistant sites and might be associated with future local recurrence. The predictive value of FMISO-PET for intra-tumoral recurrence regions was evaluated using high-resolution semiconductor detectors in patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy (IMRT). METHODS: Nine patients with local recurrence and 12 patients without local recurrence for more than 3 years were included in this study. These patients received homogeneous and standard doses of radiation to the primary tumor irrespective of FMISO uptake. The FMISO-PET image before RT was examined via a voxel-based analysis, which focused on the relationship between the degree of FMISO uptake and recurrence region. RESULTS: In the pretreatment FMISO-PET images, the tumor-to-muscle ratio (TMR) of FMISO in the voxels of the tumor recurrence region was significantly higher than that of the non-recurrence region (p < 0.0001). In the recurrent patient group, a TMR value of 1.37 (95% CI: 1.36-1.39) corresponded to a recurrence rate of 30%, the odds ratio was 5.18 (4.87-5.51), and the area under the curve (AUC) of the receiver operating characteristic curve was 0.613. In all 21 patients, a TMR value of 2.42 (2.36-2.49) corresponded to an estimated recurrence rate of 30%, and the AUC was only 0.591. CONCLUSIONS: The uptake of FMISO in the recurrent region was significantly higher than that in the non-recurrent region. However, the predictive value of FMISO-PET before IMRT is not sufficient for up-front dose escalation for the intra-tumoral high-uptake region of FMISO. Because of the higher mean TMR of the recurrence region, a new hypoxic imaging method is needed to improve the sensitivity and specificity for hypoxia.

authors

  • Nishikawa, Yukiko
  • Yasuda, Koichi
  • Okamoto, Shozo
  • Ito, Yoichi M
  • Onimaru, Rikiya
  • Shiga, Tohru
  • Tsuchiya, Kazuhiko
  • Watanabe, Shiro
  • Takeuchi, Wataru
  • Kuge, Yuji
  • Peng, Hao
  • Tamaki, Nagara
  • Shirato, Hiroki

publication date

  • December 2017