Translucent poly(vinyl alcohol) cryogel dosimeters for simultaneous dose buildup and monitoring during chest wall radiation therapy Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Chest wall radiation therapy treatment delivery was monitored using a 5 mm thick radiochromic poly(vinyl alcohol) cryogel that also provided buildup material. The cryogels were used to detect positioning errors and measure the impact of shifts for a chest wall treatment that was delivered to a RANDO phantom. The phantom was shifted by ± 2, ± 3, and ± 5 mm from the planned position in the anterior/posterior (A/P) direction; these shifts represent setup errors and the uncertainty associated with lung filling during breath-hold. The two-dimensional absolute dose distributions measured in the cryogel at the planned position were compared with the distributions at all shifts from this position using gamma analysis (3%/3 mm, 10% threshold). For shifts of ± 2, ± 3, and ± 5 mm the passing rates ranged from 94.3% to 95.6%, 74.0% to 78.8%, and 17.5% to 22.5%, respectively. These results are consistent with the same gamma analysis performed on dose planes calculated in the middle of the cryogel and on the phantom surface using our treatment plan-ning system, which ranged from 94.3% to 95.0%, 76.8% to 77.9%, and 23.5% to 24.3%, respectively. The Pinnacle dose planes were then scaled empirically and compared to the cryogel measurements. Using the same gamma metric, the pass rates ranged from 97.0% to 98.4%. The results of this study suggest that cryogels may be used as both a buildup material and to evaluate errors in chest wall treat-ment positioning during deep-inspiration breath-hold delivery. The cryogels are sensitive to A/P chest wall shifts of less than 3 mm, which potentially allows for the detection of clinically relevant errors.

publication date

  • September 2016