Home
Scholarly Works
Polarization- and wavelength-agnostic nanophotonic...
Journal article

Polarization- and wavelength-agnostic nanophotonic beam splitter

Abstract

High-performance optical beam splitters are of fundamental importance for the development of advanced silicon photonics integrated circuits. However, due to the high refractive index contrast of silicon-on-insulator platforms, state-of-the-art nanophotonic splitters are hampered by trade-offs in bandwidth, polarization dependence and sensitivity to fabrication errors. Here, we present a new strategy that exploits modal engineering in slotted waveguides to overcome these limitations, enabling ultra-broadband polarization-insensitive optical power splitters with relaxed fabrication tolerances. The proposed splitter design relies on a single-mode slot waveguide that is gradually transformed into two strip waveguides by a symmetric taper, yielding equal power splitting. Based on this concept, we experimentally demonstrate −3 ± 0.5 dB polarization-independent transmission for an unprecedented 390 nm bandwidth (1260–1650 nm), even in the presence of waveguide width deviations as large as ±25 nm.

Authors

González-Andrade D; Lafforgue C; Durán-Valdeiglesias E; Le Roux X; Berciano M; Cassan E; Marris-Morini D; Velasco AV; Cheben P; Vivien L

Journal

Scientific Reports, Vol. 9, No. 1,

Publisher

Springer Nature

Publication Date

December 1, 2019

DOI

10.1038/s41598-019-40497-7

ISSN

2045-2322

Contact the Experts team