Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The control of breathing depends critically on sensory inputs to the central pattern generator of the brainstem, arising from peripheral arterial chemoreceptors located principally in the carotid bodies (CBs). The CB receptors, i.e. glomus or type I cells, are excited by chemical stimuli in arterial blood, particularly hypoxia, hypercapnia, acidosis and low glucose, which initiate corrective reflex cardiorespiratory and cardiovascular adjustments. Type I cells occur in clusters and are innervated by petrosal afferent fibres. Synaptic specializations (both chemical and electrical) occur between type I cells and petrosal terminals, and between neighbouring type I cells. This, together with the presence of a wide array of neurotransmitters and neuromodulators linked to both ionotropic and metabotropic receptors, allows for a complex modulation of CB sensory output. Studies in several laboratories over the last 20 years have provided much insight into the transduction mechanisms. More recent studies, aided by the development of a co-culture model of the rat CB, have shed light on the role of neurotransmitters and neuromodulators in shaping the afferent response. This review highlights some of these developments, which have contributed to our current understanding of information processing at CB chemoreceptors.

publication date

  • June 1, 2010

has subject area